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Abstract— This paper presents a shape-based approach for
automatic classification and retrieval of imaged objects. The
shape-distance used in clustering is an intrinsic elastic metric
on a nonlinear, infinite-dimensional shape space, obtained
using geodesic lengths defined on the manifold. This analysis
is landmark free, does not require embedding shapes in R2,
and uses ODEs for flows (as opposed to PDEs). Clustering
is performed in a hierarchical fashion. At any level of the
hierarchy, clusters are generated using a minimum dispersion
criterion and a MCMC-type search algorithm is employed to
ensure near-optimal configurations. The Hierarchical cluster-
ing potentially forms an efficient (O(log(n)) searches) tool for
retrieval from large shape databases. Examples are presented
for demonstrating these tools using shapes from the ETH-80
shape database.

Keywords: shape clustering, shape classification, image
retrieval

I. INTRODUCTION

Unsupervised learning of visual object features is an im-
portant task in machine vision applications such as medical
imaging, automatic surveillance, biometrics, and military
target recognition. The imaged objects can be characterized
in many ways: according to their colors, textures, shapes,
movements, and locations. Of late, shape has been used as
an important discriminant for identification and recognition
of objects from images. Indeed, it is a desirable goal for an
intelligent system to have automated tools for classifying
and clustering objects according to the shapes of their
boundaries.

A. Past Shape-based Image Retrieval

In general, there have been numerous approaches for
including shapes in conjunction with color, intensity and
textures for image indexing and retrieval. Many techniques,
including Fourier descriptors [18], [17], Wavelet descriptors
[20], chain codes, polygonal approximations [19], and
moment descriptors [21] have been proposed and used in

various applications. Cortelazzo et al. [16] use chain codes
for trademark image shape descriptions and string matching
techniques. Jain and Vailaya [12] propose a representation
scheme based on histograms of edge directions of shapes. A
different approach by Mokhtarian et al. [14] uses curvature
scale space methods for robust image retrieval from the
Surrey fish dataset [13]. A majority of these methods
have focused on the limited goal of fast shape matching
and retrieval from large databases. Simple metrics using
either Fourier or moment descriptors, or scale-space shape
representations, may prove sufficient for retrieving shapes
from a database. However they lack the tools and the
framework for more advanced analysis, especially if one
requires building probability models using the retrieved
results.

B. Past Shape Analysis Methods

To address the above difficulties, and seek a a full statis-
tical framework, Klassen, Srivastava et al. [2] adopt a geo-
metric approach to parameterize curves by their arc lengths,
and use their angle functions to represent and analyze
shapes. Using the representations and metrics described in
[2], Srivastava et al. [5] describe techniques for clustering,
learning, and testing of planar shapes. One major limitation
of this approach is that all curves are parameterized by arc
length, and the resulting transformations from one shape
into another are restricted to bending only. Local stretching
or shrinking of shapes is not allowed. Mio and Srivastava
[3] resolve this issue by introducing a representation that
allows both bending and stretching of curves to compare
and match shapes. It has been demonstrated in [3], that
geodesics resulting from this approach seem more natural
as interesting features, such as corners, are better preserved,
thus leading to improved metrics in the shape space. We
use the approach presented in [3] to represent and analyze
shapes of closed curves. The basic idea is to represent
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Fig. 1. Example of a geodesic between a pair of shapes.

these curves as parameterized functions, not necessarily
arc-length, with appropriate constraints, and define a non-
linear manifold C of closed curves. To remove similarity
transformations, one forms a quotient space S = C/S,
where S is the space of similarity transformations. Shapes
of closed curves are analyzed as elements of S. The
following section describes the shape representation scheme
and briefly explains the construction of geodesics between
any two given shapes on S.

C. Elastic Shape Representation Scheme

Let β be a parameterized curve of interest, of length l,
and α = 2πβ/l be its re-scaled version. We will assume
α : [0, 2π]→ R2 to be a smooth, non-singular, orientation-
preserving, parametric curve in the sense that α̇(s) 6= 0,
∀s ∈ [0, 2π]. Define the velocity vector of the curve as
α̇(s) = eφ(s)ejθ(s), where φ : [0, 2π]→ R and θ : [0, 2π]→
R are smooth, and j =

√
−1. The function φ is the speed

of α and measures the rate of stretching and compression,
whereas θ is the angle made by α̇(s) with the X-axis
and denotes bending. We will represent α via the pair
ν ≡ (φ, θ), and denote by H the collection of all such
pairs. In order to make the shape representation invariant
to rigid motions and uniform scalings, we restrict shape
representatives to pairs (φ, θ) satisfying the conditions;

C = {(φ, θ) :

∫ 2π

0

eφ(t)dt = 2π,
1

2π

∫ 2π

0

θ(t)eφ(t)dt = π,

∫ 2π

0

eφ(t)ejθ(t)dt = 0} ⊂ H,

where C is called the pre-shape space of planar elastic
strings.

Remark: Note that the pair (φ, θ) represents the shape of β,
and thus ignores its placement, orientation, and scale. Shape
deformations are studied using geodesics in the shape space
S connecting them. Given two shapes ν1 and ν2, computing
a geodesic involves finding a tangent direction g ≡ (h, f),
such that the exponential map [1], expν1

(g) = ν2. This
is also represented by the geodesic flow Ψ1(ν1, g) = ν2.
Figure 1 shows such a geodesic between two shapes. Shape
geodesics are computed under the following Riemannian
metric [3]: Given (φ, θ) ∈ C, let hi and fi, i = 1, 2 be

tangent to C at (φ, θ). For a, b > 0, define

〈(h1, f1), (h2, f2)〉(φ,θ) = a

∫ 2π

0

h1(s)h2(s) eφ(s) dt +

b

∫ 2π

0

f1(s)f2(s) eφ(s) ds.

(1)

The parameters a and b control the tension and rigidity
in the metric. The geodesic distance, (used as the shape
metric) is now given by

d(ν1, ν2) , ‖(h, f))‖(φ,θ) =
√
〈(h, f), (h, f)〉(φ,θ)

The remainder of the paper is organized as follows.
Section II outlines a clustering algorithm using the geodesic
lengths discussed above. The results and the performance
of the clustering algorithm are demonstrated in Section III
followed by the conclusion.

II. SHAPE CLUSTERING

Classical clustering algorithms on Euclidean spaces gen-
erally fall into two main categories: partitional and hierar-
chical [8]. Assuming that the desired number k of clusters
is known, partitional algorithms typically seek to minimize
a cost function Qk associated with a given partition of
the data set into k clusters. Usually, the total variance of
a clustering is a widely used cost function. Hierarchical
algorithms, in turn, take a bottom-up approach. If the data
set contains n points, the clustering process is initialized
with n clusters, each consisting of a single point. The
clusters are then merged successively according to some
criterion until the number of clusters is reduced to k.
Commonly used metrics include the distance of the means
of the clusters, the minimum distance between elements of
clusters, and the average distance between elements of the
clusters. In this paper, we choose a value of k beforehand.

A. Minimum-Variance Clustering

Consider the problem of clustering n shapes (in S) into
k clusters. To motivate our algorithm, we begin with a
discussion of a classical clustering procedure for points in
Euclidean spaces, which uses the minimization of the total
variance of clusters as a clustering criterion. More precisely,
consider a data set with n points {y1, y2, . . . , yn} with each
yi ∈ Rd. If a collection C = {Ci, 1 ≤ i ≤ k} of subsets of
Rd partitions the data into k clusters, the total variance of
C is defined by Q(C) =

∑k
i=1

∑
y∈Ci ‖y−µi‖2, where µi

is the mean of data points in Ci. The term
∑

y∈Ci ‖y−µi‖2
can be interpreted as the total variance of the cluster Ci.
The total variance is used instead of the (average) variance
to avoid placing a bias on large clusters, but when the
data is fairly uniformly scattered, the difference is not
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significant and either term can be used. The widely used k-
Means Clustering Algorithm is based on a similar clustering
criterion (see e.g. [8]). The soft k-Means Algorithm is a
variant that uses ideas of simulated annealing to improve
convergence [9], [7]. These ideas can be extended to shape
clustering using d(ν, µi)

2 instead of ‖y−µi‖2, where d(·, ·)
is the geodesic length and µi is the Karcher mean [5] of a
cluster Ci on the shape space.

Clustering algorithms that involve finding means of clus-
ters are only meaningful in metric spaces where means
can be defined and computed. However, the calculation
of Karcher means of large shape clusters is a computa-
tionally demanding operation. Therefore, it is desirable to
replace quantities involving the calculation of means by
approximations that can be derived directly from distances
between the corresponding data points. Hence, we propose
a variation that replaces d(ν, µi)

2 with the average distance-
square Vi(ν) from ν to elements of Ci. If ni is the size
of Ci, then Vi(ν) = 1

ni

∑
ν′∈Ci d(ν, ν′)2. The cost Q

associated with a partition C can be expressed as

Q(C) =

k∑

i=1

2

ni


 ∑

νa∈Ci

∑

b<a,νb∈Ci
d(νa, νb)

2


 . (2)

If the average distance-square within the clusters is used,
the scale factor in each term is modified to 2

ni(ni−1) . In
either case, we seek configurations that minimize Q, i.e.,
C∗ = argminQ(C). In this paper we have used the latter
cost function.

B. Clustering Algorithm

We will minimize the clustering cost using a Markov
chain Monte Carlo (MCMC) search process on the config-
uration space. The basic idea is to start with a configuration
of k clusters and keep on reducingQ by re-arranging shapes
amongst the clusters. The re-arrangement is performed in a
stochastic fashion using two kinds of moves. These moves
are performed with probability proportional to negative
exponential of the Q value of the resulting configuration.

1) Move a shape: Here we select a shape randomly
and re-assign it to another cluster. Let Q(i)

j be the
clustering cost when a shape νj is re-assigned to the
cluster Ci keeping all other clusters fixed. If νj is
not a singleton, i.e. not the only element in its cluster,
then the transfer of νj to cluster Ci is performed with
the probability:

PM (j, i;T ) =
exp(−Q(i)

j /T )
∑k

i=1 exp(−Q(i)
j /T )

, i = 1, 2, . . . , k

Here T plays the role of temperature as in simulated
annealing. Note that moving νj to any other cluster

is disallowed if it is a singleton in order to fix the
number of clusters at k.

2) Swap two shapes: Here we select two shapes from
two different clusters and swap them. Let Q(1) and
Q(2) be the Q-values of the original configuration
(before swapping) and the new configuration (after
swapping), respectively. Then, swapping is performed
with the probability:

PS(T ) =
exp(−Q(2)/T )∑2
i=1 exp(−Q(i)/T )

.

Additional types of moves can also be used to improve
the search over the configuration space although their
computational cost becomes a factor too. In view of the
computational simplicity of moving a shape and swapping
two shapes, we have restricted the algorithm to these two
simple moves.

In order to seek global optimization, we have adopted a
simulated annealing approach. That is, we start with a high
value of T and reduce it slowly as the algorithm search for
configurations with smaller dispersions. Additionally, the
moves are performed according to a Metropolis-Hastings
algorithm (see [6] for reference), i.e. candidates are pro-
posed randomly and accepted according to certain proba-
bilities (PM and PS above). Although simulated annealing
and the random nature of the search help in getting out
of local minima, the convergence to a global minimum is
difficult to establish. As described in [6], the output of this
algorithm is a Markov chain but is neither homogeneous
nor convergent to a stationary chain. If the temperature
T is decreased slowly, then the chain is guaranteed to
converge to a global minimum. However, it is difficult to
make an explicit choice of the required rate of decrease in
T and instead we rely on empirical studies to justify this
algorithm. It is important to note that once the pairwise
distances are computed, they are not computed again in the
iterations. Secondly, unlike k-mean clustering mean shapes
are not used here. These factors make Algorithm 1 efficient
and effective in clustering diverse shapes.

We have applied Algorithm 1 to organize a collection
of n = 3270 shapes (not shown) from the ETH-80 shape
database [10] into 25 clusters. Figure 2 shows a few sample
images of common objects, and their shape representations
from the ETH-80 dataset. Shown in Figure 3(a) are a few
samples from the 25 clusters. The elastic metric used in
computing pairwise distances for the clusters shown in Fig.
3 assumes the values of a = b = 1 in Eqn. 1.

In each run of Algorithm 1, we keep the configuration
with minimum Q value. Figure 3(b) shows an evolution of
the search process where the Q values are plotted against
the iteration index. Figure 3(c) shows a histogram of the
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Algorithm 1: For n shapes and k clusters initialize by
randomly distributing n shapes among k clusters. Set a high
initial temperature T .

1) Compute pairwise geodesic distances between all n
shapes. This requires n(n− 1)/2 geodesic computa-
tions.

2) With equal probabilities pick one of two moves:
a) Move a shape:

i) Pick a shape νj randomly. If it is not a
singleton in its cluster then compute Q

(i)
j

for all i = 1, 2, . . . , k.
ii) Compute the probability PM (j, i;T ) for all

i = 1, . . . , k and re-assign νj to a cluster
chosen according to the probability PM .

b) Swap two shapes:
i) Select two clusters randomly, and select a

shape from each of them.
ii) Compute the probability PS(T ) and swap

the two shapes according to that probability.
3) Update temperature using T = T/β and return to

Step 2. We have used β = 1.0001 in our experiments.

best Q values obtained in 100 such runs, each starting from
a random initial configuration. It must be noted that 80%
of these runs result in configurations that are quite close
to the optimal. Once pairwise distances are computed, it
takes approximately 40 seconds to perform 45,000 steps
of Algorithm 1 in the matlab environment. The success of
Algorithm 1 in clustering these diverse shapes is visible in
these results as similar shapes have been clustered together.

C. Hierarchical Classification

An important goal of this paper is to organize large
databases of shapes in a fashion that allows for efficient
searches. One way of accomplishing this is by organizing
shapes in a tree structure, such that shapes are refined
regularly as we move down the tree. In other words, objects
are organized (clustered) according to coarser differences
(in their shapes) at top levels and finer differences at lower
levels. This is accomplished in a bottom up construction
as follows: start with all the shapes at the bottom level
and cluster them according to Algorithm 1 for a pre-
determined k. Then, compute a mean shape for each cluster
and at the next level cluster these mean shapes according
to Algorithm 1. Applying this idea repeatedly, one obtains
a tree organization of shapes in which shapes change from
coarse to fine as we move down the tree. Critical to this
organization is the notion of the mean of shapes for which
we utilize Karcher means.
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(a) (b)
Fig. 2. (a) Examples of images from the ETH-80 dataset. (b) Examples
of a few shapes and their angle functions.

We follow the procedure above to generate an example of
a tree structure (Fig. 4) obtained for 3270 shapes selected
from the ETH-80 database. It is interesting to study the
variations in shapes as we follow a path bottom level,
these 300 shapes are clustered in k = 25 clusters, with
the clusters denoted by the indices of their element shapes.
Computing the means of each these clusters, we obtain
shapes to be clustered at the next level. Repeating the
clustering for k = 8 clusters we obtain the next level
and their mean shapes. In this example, we have chosen
to organize shapes in six levels with a single shape at the
top. The choice of parameters such as the number of levels,
and the number of clusters at each level, depends on the
required search speed and performance. It is interesting to
study the variations in shapes as we follow a path from top
to bottom in this tree. This hierarchical representation of
shapes can be effectively used to compare highly dissimilar
shapes at a low resolution while allowing similar shapes to
be compared at a higher resolution.

III. RETRIEVAL PERFORMANCE AND RESULTS

A logical way to retrieve searches from the hierarchical
database is to start at the top, compare the query with the
shapes at each level, and proceed down the branch that leads
to the best match. At any level of the tree, there is a number,
say k, of possible shapes, and our goal is to find the shape
that matches the query ν the best. This can be performed
using k − 1 nearest-neighbor tests leading to the selection
of the best hypothesis. In the current implementation, we
have assumed a simplification that the covariance matrices
for allhypotheses at all levels are identity and only the mean
shapes are needed to organize the database. For identity
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Fig. 3. (a) Examples of shapes from clusters 8,14,16,23 of the ETH-80 database. (b) Sample evolution of Algorithm 1 for the configuration in (a).
(c) Histogram of Q(C∗) for 100 runs.

covariances, the task of finding the best match at any level
reduces to finding the nearest meanshape at that level. Let
µi be the given shapes at a level and let xi be the Fourier
vector that encode tangent direction from ν to µi. Then,
the nearest shape is indexed by î = argmini ||xi||. Proceed
down the tree following the nearest shape µî at each level.
This continues until we reach the last level and have found
an overall match to the given query. Wehave implemented
this idea using test images from the ETH database. For each
test image, we first extract the contour, compute its shape
representation as ν ∈ S, and follow the tree, shown in Fig.
4, for retrieving similar shapes from the database.

Fig. 5 presents some pictorial examples from this ex-
periment. Shown in the left panels are the original images
and in the second left panels their automatically extracted
contours. The third column shows five nearest shapes
retrieved in response to the query. Finally, the last panel
states the time taken for the hierarchical search. In this

experiment, retrieval performance is defined with respect
to the original labels, e.g., apple, car, pear, etc. Shown in
Fig. 6 are plots of retrieval performances, measured using
two different quantities. The first quantity is the precision
rate, defined as the ratio of number of relevant shapes
retrieved, i.e., shapes from the correct class, to the total
number of shapes retrieved. Ideally, this quantity should
be one, or quite close to one. The second quantity, called
the recall rate, is the ratio of number of relevant shapes
retrieved to the total number of shapes in that class in the
database. Fig. 6(a) shows average variation of precision
rate plotted against the number of shapes retrieved, for
four different classes –apple, car, pear, and tomato. As
these curves indicate, the retrieval performance of apple
falls quickly while that for the other classes remains high.
The reason for a low-retrieval performance of apple shapes
is their close resemblance in shape to tomatoes. Fig. 6(b)
shows plots of recall rate plotted against the number of
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Fig. 4. Hierarchical Organization of 3270 shapes from the ETH-80 database.

shapes retrieved, and Fig. 6(c) plots precision rate against
the recall rate, for the same four classes.

IV. CONCLUSION

We have presented a hierarchical organization of shapes
based upon an elastic shape-distance metric which utilizes
the Riemannian structure of the shape space. Clustering is
performed efficiently by minimizing the pair-wise average
variance within the clusters and can be used in clustering of
shape databases of objects. Hierarchical clustering reduces
the search and test times for shape queries against large
databases. This has enormous potential for systems which
use shape based object retrieval.
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Fig. 6. (a) Precision rate versus number of shapes retrieved, (b) recall rate versus number retrieved, and (c) precision rate versus recall rate.
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Fig. 5. Examples of shape retrieval using hierarchical organization.

based indexing of image databases. Content-Based Access of Image
and Video Libraries, 1998

[16] G. Cortelazzo and G. A. Mian and G. Vezzi and P. Zamperoni.
Trademark shapes description by string-matching techniques. Pattern
Recognition, 27(8):1005–1018,1994.

[17] C. T. Zahn and R. Z. Roskies Fourier descriptors for plane closed
curves IEEE Trans. Computer, C-21, 269–281, 1972.

[18] E. Persoon and K. S. Fu Shape discrimination using Fourier
descriptors IEEE Trans. Systems, Man, and Cybernetics,(7):170–
179, Mar. 1977.

[19] J. Gary and R. Mehrotra. Shape similarity-based retrieval in image
database systems. In Proc. of SPIE, 1662:2–8, 1992.

[20] D. G Shen and Horace. H. S Ip. Discriminative Wavelet shape
Descriptors for Invariant recognition of 2D patterns, Pattern Recog-
nition, 32(2):151–166, February, 1999.

[21] M. R. Teague. Image analysis via the general theory of moments J.
Optical Soc. of America,70(8):920–930, 1980.

68


